WVNonlinearAdvection
The advective flux, \(\mathbf{u}\cdot \nabla \mathbf{u}\) and \(\mathbf{u}\cdot \nabla \eta\)
Declaration
WVNonlinearAdvection < WVForcingOverview
The nonlinear advection forcing adds the nonlinear terms to the momentum and thermodynamic equation.
The nonlinear terms are all computed in the spatial domain.
For nonhydrostatic transforms,
\[\begin{align} \mathcal{S}_u &= - \left( u \partial_x u + v \partial_y u + w \partial_z u \right) \\ \mathcal{S}_v &= - \left( u \partial_x v + v \partial_y v + w \partial_z v \right) \\ \mathcal{S}_w &= - \left( u \partial_x w + v \partial_y w + w \partial_z w \right) \\ \mathcal{S}_\eta &= - \left( u \partial_x \eta + v \partial_y \eta + w \left(\partial_z \eta +\eta \partial_z \ln N^2 \right) \right) \end{align}\]for hydrostatic transforms,
\[\begin{align} \mathcal{S}_u &= - \left( u \partial_x u + v \partial_y u + w \partial_z u \right) \\ \mathcal{S}_v &= - \left( u \partial_x v + v \partial_y v + w \partial_z v \right) \\ \mathcal{S}_\eta &= - \left( u \partial_x \eta + v \partial_y \eta + w \left(\partial_z \eta +\eta \partial_z \ln N^2 \right) \right) \end{align}\]and for quasigeostrophic transforms,
\[\begin{align} \mathcal{S}_\textrm{qgpv} &= - \left( u \partial_x q + v \partial_y q \right) \end{align}\]where \(q\) is the qgpv.
Notes
This is the only forcing added to the transforms by default. You must explicitly remove it if you want to consider linear flows.
Topics
- Initialization
WVNonlinearAdvectioninitialize the WVNonlinearAdvection nonlinear flux
- Properties
dLnN2variable stratification factor
- CAAnnotatedClass requirement
classRequiredPropertyNamesReturns the required property names for the class