WVNonlinearAdvection

The advective flux, \(\mathbf{u}\cdot \nabla \mathbf{u}\) and \(\mathbf{u}\cdot \nabla \eta\)


Declaration

WVNonlinearAdvection < WVForcing

Overview

The nonlinear advection forcing adds the nonlinear terms to the momentum and thermodynamic equation.

The nonlinear terms are all computed in the spatial domain.

For nonhydrostatic transforms,

\[\begin{align} \mathcal{S}_u &= - \left( u \partial_x u + v \partial_y u + w \partial_z u \right) \\ \mathcal{S}_v &= - \left( u \partial_x v + v \partial_y v + w \partial_z v \right) \\ \mathcal{S}_w &= - \left( u \partial_x w + v \partial_y w + w \partial_z w \right) \\ \mathcal{S}_\eta &= - \left( u \partial_x \eta + v \partial_y \eta + w \left(\partial_z \eta +\eta \partial_z \ln N^2 \right) \right) \end{align}\]

for hydrostatic transforms,

\[\begin{align} \mathcal{S}_u &= - \left( u \partial_x u + v \partial_y u + w \partial_z u \right) \\ \mathcal{S}_v &= - \left( u \partial_x v + v \partial_y v + w \partial_z v \right) \\ \mathcal{S}_\eta &= - \left( u \partial_x \eta + v \partial_y \eta + w \left(\partial_z \eta +\eta \partial_z \ln N^2 \right) \right) \end{align}\]

and for quasigeostrophic transforms,

\[\begin{align} \mathcal{S}_\textrm{qgpv} &= - \left( u \partial_x q + v \partial_y q \right) \end{align}\]

where \(q\) is the qgpv.

Notes

This is the only forcing added to the transforms by default. You must explicitly remove it if you want to consider linear flows.

Topics



This site uses Just the Docs, a documentation theme for Jekyll.